GAYAZA HIGH SCHOOL

SOLUTIONS TO S.2 MATH WORKSHEET FOUR ON SETS

PREREQUISITE KNOWLEDGE:

- NUMBERS
- INTERGERS

SETS PART I

In modern mathematics, just about everything rests on the very important concept of the **set**. A set is just a collection of elements, or members. For instance, you could have a set of friends: $F = \{Moses, Kenny, Edward, William, Elsam\}$ or a set of numbers: $Y = \{-3.4, 12, 9999\}$.

In this worksheet on sets we will solve 12 different types of questions. The questions on sets are basically related on;

- Elements of set and notation of a set.
- Representation of a set.
- Cardinal number of a set.
- Types and pairs of set.

1. Which of the following are sets? Justify your answer.

1. Which of the following are sets: Justify your answe	
(a) The collection of all the days in a week	(b) The collection of all difficult questions in the
beginning with the letter 'T'	chapter on sets.
Answer: Is a set because it a well-defined	Answer: Is not a set because it is not a well-defined
collection of distinct objects.	collection of distinct objects.
(c) The collection of girls in your class.	(d)The collection of all rivers in India.
Answer: Is a set because it a well-defined	Answer: Is a set because it a well-defined collection
collection of distinct objects.	of distinct objects.
,	, ,
(e) The collection of all active teachers in the	(f) The collection of all integers more than -3.
school.	Answer: Is a set because it a well-defined collection
Answer: Is not a set because it is not a well-defined	of distinct objects.
collection of distinct objects.	

RECALL:

If x is an element of a set A, we write $x \in A$, and if x is not an element of A we write $x \notin A$. So, using the sets defined above,

 $-862 \in \mathbb{Z}$, since -862 is an integer, and $2.9 \notin M$, since 2.9 is not greater than 33.

2. If,

 $A = \{3, 5, 7, 9\}$ $B = \{2, 4, 6, 8, 10\}$ $C = \{12, 14, 18, 20, 24\}$ $D = \{21, 26, 31, 36\}$

(a) State whether true or false.

(i) 13 ∈ C False	(ii) 6 ∉ A True	(iii) 9∉A False	(iv) 24 ∈ C True
(v) 31 ∈ D True	(vi) 36 ∉ D False	(vii) 20 ∉ C False	(viii) 9 ∈ A True

(b) Fill in the blanks.

(i) $3 \in \underline{A}$	(ii) 4 <u>E</u> B	(iii) 26 <u>∉</u> C	(iv) $8 \in \underline{B}$
(v) 5 <u>∈</u> A	(vi) 6 <u>∉</u> C	(vii) 21 <u>∈</u> D	(viii) 18 <u>∉</u> B

RECALL:

There are two methods of representing a set:

- (i) Roster or tabular form
- (ii) Set-builder form.

Roster or tabular form: In roster form, all the elements of a set are listed, the elements are being separated by commas and are enclosed within braces { }. For Example: Z =the set of all integers = {...,-3,-2,-1,0,1,2,3,...}

Set-builder form: In the set builder form, all the elements of the set, must possess a single property to become the member of that set. For Example: $Z = \{x: x \text{ is an integer}\}$

You can read $Z = \{x : x \text{ is an integer}\}$ as "The set Z equals all the values of x such that x is an integer." $M = \{x : x > 3\}$

(This last notation means "all real numbers *x* such that *x* is greater than 3." So, for example, 3.1 is in the set M, but 2 is not. The colon ":" means "such that".)

(b) $B =$ The set of all prime numbers greater
than 1 but less than 29
{2, 3, 5, 7, 11, 13, 17, 19, 23}
(_, _, _, _, _,,,,,,,
(d) $D =$ The set of letters in the word LOYAL
{L, 0, Y, A}
(f) $F =$ The set of all factors of 36
{1, 2, 3, 4, 6, 9, 12, 18, 36}
(h) $H = \{x : x \text{ is a multiple of } 3 \text{ and } x < 21\}$
{3, 6, 9, 12, 15, 18}
(j) $J = {x : x = 5n - 3, n \in W, and n < 3}$
{-3, 2, 7}
(l) $N = {x : x is a positive integer and is a divisor}$
of 18}
{1, 2, 3, 6, 9, 18}
(n) $Q = \{x : x \text{ is a color in the rainbow}\}$
{red, orange, yellow, green, blue, indigo, violet}

3. Write the following sets in the roster form.

4. Write each of the following in set builder form.

(a) $A = \{5, 10, 15, 20\}$	(b) $B = \{l, 2, 3, 6, 9, 18\}$	(c) $C = \{P, R, I, N, C, A, L\}$	(d) $D = \{0\}$
{x : x is a multiple of 5	{x : x is a factor of 18}	{x : x is a letter of the	${x : x \in W \text{ and } x < 1}$
and $5 \le x \le 20$ }		word 'Principal'}	
(e) $E = \{ \}$	(f) $F = \{0, 1, 2, 3, \dots, n\}$	(g) $G =$	(h) $H = \{Jan, June,$
$\{x : x \in N \text{ and } x < 1\}$	19}	$\{-8, -6, -4, -2\}$	July}
	$\{x : x \in W \text{ and } 0 \le x \le 0\}$	${x: x = -2n and n \in N}$	{x : x is a month of
	19}	and $1 \le n \le 4$ }	the year beginning
			with J}
(i) $I = \{a, e, i, 0, u\}$	(j) $J = \{a, b, c, d,, z\}$	(k) $K = \{\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}\}$	(l) $L = \{1, 3, 5, 7, 9\}$
{x : x is a vowel of the	{x : x is a letter of the	$\{x : x = 1/x, n \in N \text{ and } 1$	$\{x : x \text{ is odd, } x \leq 9\}$
English alphabet}	English alphabet}	$\leq n \leq 6$	

RECALL

Cardinal number of a set.

The **number** of distinct elements in a finite **set** is called its **cardinal number**. It is denoted as n(A) and read as 'the **number** of elements of the **set**'.

For example: **Set** A = {2, 4, 5, 9, 15} has 5 elements, i.e. n(A) = 5

5. Write the cardinal number for each of the following.

(a) $X =$ The set of months in a year	(b) $Y =$ The set of letters in the word INTELLIGENT
n(X) = 12	n(Y) = 6
(c) $Z =$ The set of prime numbers from 2 to 11	(d) $P = {x : x is an even prime number}$
n(Z) = 5	n(P) = 1
(e) $Q = \{x : x \text{ is a quadrilateral having 5 sides}\}$	(f) $R = {x : x \in I, -5 < x < 2}$
n(Q) = 0	n(R) = 6
(g) $S = \{x \mid x \in W, x + 2 < 9\}$	(h) $T = {x x is a prime number which is a divisor}$
n(S) = 7	of 60} $n(T) = 3$
(i) $V = \{x : x \text{ is a } 2 \text{-digit number such that the} \}$	(j) $W =$ The set of hours in a day
sum of digits is 6} $n(V) = 6$	n(W) = 24

RECALL

If a **set** has a starting and end point both then it is **finite** but if it does not have a starting or end point, then it is **infinite set**.

If a **set** has a **limited number of elements, then** it is **finite** but if **its number of elements is unlimited** then it is **infinite**.

6. Classify the following as finite and infinite sets.

(a) $A = \{x : x \in N \text{ and } x \text{ is even}\}$	(b) $B = \{x : x \in N \text{ and } x \text{ is composite}\}$
Infinite	Infinite
(c) $C = \{x : x \in N \text{ and } 3x - 2 = 0\}$	(d) $D = \{x : x \in N \text{ and } x^2 = 9\}$
Finite	Finite
(e) $E = \{The set of numbers which are multiples \}$	(f) G = {The set of letters in the English
of 3}	alphabet}
Infinite	Finite
(g) H = {The set of persons living in a house}	(h) $I = \{x : x \in I, x < -2\}$
Finite	Finite
(i) $J = {x : x \in P, p \text{ is a prime number}}$	(j) $K =$ The set of fractions with numerator 3.
Infinite	Infinite

RECALL

You can also have a set which has no elements at all. This special set is called **the empty set or null set**, and we write it with the special symbol \emptyset or { }.

A **singleton**, also known as a **unit set**, is a **set** with exactly one element. For example, the **set** {null} is a **singleton** containing the element null.

7. Identify the following as null set or singleton set	t.

, rachary the following as han set of singleton set.		
(a) $A = \{x \mid x \in N, 1 < x < 2\}$	(b) P = {Point of intersection of two lines}	
Null	Singleton	
(c) $C = \{x : x \text{ is an even prime number greater}\}$	(d) $Q = \{x \mid x \text{ is an even prime number}\}$	
than 2} Null	Singleton	
(e) $E = \{x : x^2 = 9, x \text{ is even}\}$	(f) R = {The set of whole numbers lying between 0	
Null	and 2} Singleton	
(g) $B = \{0\}$	(h) D = {The set of largest 1 digit number}	
Singleton	Singleton	
(i) F = {The set of triangles having 4 sides}	(j) H = {The set of even numbers not divisible by 2}	
Null	Null	

RECALL

Equal sets have the exact same elements in them, even though they could be out of order. **Equivalent sets** have different elements but have the same amount of elements. Therefore, if two **sets** have the same cardinality, they are **equivalent**.

8. From the sets given below, select the equal sets.

A = {3, 5, 9, 13}, B = {2, 3, 4, 5}, C = {5, 9, 13, 15}, D = {4, 2, 5, 3}, E = {-2, 2}, F = {o, b}, G = {2, -2}, H = {1, 2}

B = D and E = G

9. Which two sets A and B are equal? Give reasons to support your answer.

- (a) $A = \{x : x \text{ is a letter in the word SEAT}\}$ and $B = \{x : x \text{ is a letter in the word TASTE}\}$
- (b) $A = \{2, 6, 10, 14\}$ and $B = \{6, 2, 14, 16\}$
- (c) $A = \{1, 3, 5, 7, 9\}$ and $B = \{x : x \text{ is a positive odd integer } x \le 9\}$
- (d) $A = \{0\}$ and $B = \{x : x > 15 \text{ and } x < 5\}$

(a) and (c) Because they have the same elements.

10. Which of the following pairs of sets are equivalent or equal?

- (a) $A = \{x : x \in N, x \le 6\}$ and $B = \{x : x \in W, 1 \le x \le 6\}$
- (b) $P = \{\text{The set of letters in the word 'plane'}\} \text{ and } Q = \{\text{The set of letters in the word 'plain'}\}$
- (c) $X = \{\text{The set of colors in the rainbow}\}$ and $Y = \{\text{The set of days in a week}\}$
- (d) $M = \{4, 8, 12, 16\}$ and $N = \{8, 12, 4, 16\}$
- (e) $A = \{x : x \in N, x \le 5\}$ and $B = \{x : x \in I, 5 < x \le 10\}$

Equal sets:	(a) and (d)
Equivalent sets:	(b), (c) and (e)

RECALL

Two **sets** A and B are said to be **disjoint**, if they do not have any element in common. **Overlapping sets**: Two **sets** A and B are said to be **overlapping** if they contain at least one element in common.

11. Find which of the following sets are disjoint or overlapping.

- (a) $A = \{\text{The set of boys in the school}\}\ \text{and } B = \{\text{The set of girls in the school}\}\$
- (b) $P = \{\text{The set of letters in the English alphabet}\}\$ and $Q = \{\text{The set of vowels in the English alphabet}\}\$
- (c) $X = \{x : x \text{ is an odd number, } x < 9\}$ and $Y = \{x : x \text{ is an even number, } x < 10\}$
- (d) $M = \{x : x \text{ is a factor of } 24\}$ and $N = \{x : x \text{ is a multiple of } 3, \text{ less than } 30\}$
- (e) $E = \{9, 99, 999\}$ and $F = \{1, 10, 100\}$
- (f) $G = \{\text{The set of letters in the word TAME}\}\ \text{and } H = \{\text{The set of letters in the word MATE}\}$

Disjoint sets:	(a), (c) and (e)
Overlapping sets:	(b), (d) and (f)

12. State whether the following are true or false.

(a) The set of letters in the word MASTER is	(b) The set of vowels in the word PLANET is an
finite.	empty set.
True	True
(c) {0} represents a null set.	(d) Equivalent sets are always equal.
False	False
(e) An empty set is a finite set.	(f) 10 ∉ set of multiples of 5.
False	True
(g) $4 \in \{x: 4 \le x \le 10\}$	(h) If two sets are equal, they are also equivalent.
False	True

THE END.